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Abstract

The Helmholtz machine is a new unsupervised learning architecture that uses top-
down connections to build probability density models of input and and bottom up
connections to build inverses to those models. The wake-sleep learning algorithm for
the machine involves just the purely local delta rule. This paper suggests a number of
different varieties of Helmholtz machines, each with its own strengths and weaknesses,
and relates them to cortical information processing.

1 Introduction

This special issue focuses on four important questions about neural computation: 1)How is
theworld represented in the firing of neurons? 2)What are the functional roles of bottom-up
and top-down connections between cortical areas? 3) Does the brain use internal models
of the external world? 4) What are the basic synaptic plasticity rules? We believe that
answers to these questions are indicated by the new theory of unsupervised learning that
we present here.

Supervised learning algorithms for neural networks usually have the clear and easily
justified goal of minimizing some loss function (eg the expected squared error or misclassi-
fication rate) on test data that is drawn from the same distribution as the training data. For
unsupervised learning algorithms the goals are often less clear and less justifiable. Those
that have been proposed in the literature can be roughly divided into four broad classes:
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� Revealing structure in the ensemble of input vectors. This can be done by assigning
each input vector to a cluster or to a location in a low-dimensional map. It can also
be done by redescribing the input vectors in terms of multiple hidden causes that are
not mutually exclusive, or by directly extracting informationally rich relationships
between different parts of the input (Becker & Hinton, 1992).� Preprocessing the data to facilitate a subsequent stage of supervised or reinforcement
learning. The preprocessing may reduce the dimensionality of the data (eg principal
components analysis, PCA, or self-organising feature maps, Kohonen, 1982). It may
also produce a representation in terms of approximately independent features, as in
PCA or factorial codes (Barlow, 1989) which typically reduces interference and in-
creases the convergence speed of subsequent supervised learning procedures. It may
even allow the subsequent supervised stage to be linear (as in radial basis functions).� Assigning a probability density to input vectors so as to maximize the likelihood of
the observed data or the expected likelihood of more data from the same distribution.
Density estimation allows novel input vectors to be detected by their low probability
density. It also allows input vectors to be assigned to classes probabilistically if a
separate density model is created for each class.� Compressing the data, with or without loss, to facilitate storage or communication.

Obviously, these goals are not independent. For example, clustering the data using a
mixture of Gaussians model also assigns a probability density to each input vector. Using
a hierarchical coding scheme to compress input vectors can be a good way of discovering
true hidden causes because, in the large data limit, the true way in which the data was
generated is almost certainly the most efficient way to code it. Discovering the true hidden
causes of the input vectors is an excellent way to facilitate subsequent supervised learning
because desired responses are almost always more simply related to the underlying causes
of the sensory data than to the raw sensory data itself. Schemes for losslessly compressing
input vectors can be used as probability density estimators because the number of bits
required to code an input vector losslessly can always be viewed as an upper bound on its
negative log probability.

Helmholtzmachines, the newmodel of unsupervised learningwhichwe present here, were
originally motivated by the idea that hierarchical compression schemes would reveal the
true hidden causes of the sensory data and that this would greatly facilitate subsequent
supervised learning. An obvious practical advantage of this two stage approach is that
it is typically easier to get the unlabelled data needed for unsupervised learning than
the labelled data required for supervised learning, so the first stage can extract useful
information from data that is useless for pure supervised learning. It is interesting, but
far less obvious, that under very reasonable assumptions, the two stage approach can be
superior even if all of the data is labelled. The minimum description length framework
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(MDL, Rissanen, 1989) can be used to clarify this point. For a neural network to be of
any value at all, the information required to specify the parameters of the neural network
must be less than the information saved when communicating the data using the network.
WhenMDL is applied to supervised learning, it is the labels that need to be communicated,
so the information that each training case provides about the parameters is at most the
number of predictable bits in the label. In unsupervised learning it is the input vectors
that must be communicated so the useful information is at most the redundancy in the
input vector which is typically much greater. Unsupervised learning therefore extracts far
more information per training case. Of course, this information may be irrelevant to the
labels. In the worst case, a complicated generative process involving hidden states could
be used to model the input vectors, but the label associated with each input vector could
have nothing to do with the hidden states of the generative model. Luckily, the world is
not like this. It is almost always true that the desired responses to raw sensory data have a
simpler relationship to the way the data was generated than to the raw data itself.

The next section develops the theory behind the two existing varieties of Helmholtz ma-
chine; section 3 discusses alternative versions of themachine that we have explored, chang-
ing the internal architecture, the unit activation functions, and the learning rules; section 4
draws together the answers to the four questions about the cortex that are suggested by
these Helmholtz machines.

2 Density estimation with hidden states

Neural networks are often used as bottom-up recognition devices that transform input
vectors into representations of those vectors in one or more hidden layers. However,
networks can also be used as top-down generative models that produce vectors. Learning
in such networks consists of adjusting parameters so as to maximise the log-likelihood of
observed data vectors d: log p(dj�) = log "X� p(d; �j�)# (1)

where � 2 A are the hidden states that can underly datapoint d. Datapoints are treated
as being independent and therefore (adopting a non-Bayesian perspective) learning the
parameters amounts to maximum likelihood estimation, finding�� = argmaxXd log p(dj�):
or at least local maxima of this. For the case of mixtures of Gaussians, � indexes the
different members in the mixture, p(d; �j�) = p(�j�)p(dj�; �) where p(�j�) are the mixing
proportions, and p(dj�; �) is the probability density function associated with Gaussian �.
For the case of binary Boltzmann machines (Hinton & Sejnowski, 1986) or binary Bayesian
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networks (Pearl, 1988) for density estimation or unsupervised learning, the inputs d are
clamped on some of the units, and � indexes the 2h possible states of the h remaining units
in the machine.

These last twocasespointup thedifficulty thatHelmholtzmachines are intended to address.
Changing the parameters � to increase the probability (or probability density) assigned to
data d requires performing sums such as those in equation 1 over an exponentially large
set of hidden states. This is intractable in many cases of interest, and so other methods
are necessary. One can hope that many of the states � will have very low net probabilitiesp(d; �j�) � 1 and use Markov chain Monte Carlo sampling methods to sample the higher
probability states (as in the Boltzmannmachine). Alternatively, one can use approximation
methods such as mean field methods or the Helmholtz machine which make the task of
optimising � in the light of the data computationally tractable.
Tractable Cases

There are two important cases in which the hidden states are such that it is computationally
tractable to calculate the sum in equation 1 exactly. First, if all the units are linear and are
subject to Gaussian noise, the resulting Helmholtz machine performs a standard form of
factor analysis (Everitt, 1984; Neal et al, in preparation).

The second case is mixtures of Gaussians, in which the hidden units are non-linear, but
interact in a simple way. In the generative model for mixtures of Gaussians, p(�j�) = ��
where X� �� = 1 (2)

and p(dj�; �) = N [��;��]. Tractability comes from equation 2, since it implies that only
one of the Gaussians can be responsible for each d. Therefore the sum in equation 1 grows
linearly rather than exponentially in the number of Gaussians. Although one could use
gradient ascent to optimise � = f��; ��;��g, just as for factor analysis (Rubin & Thayer,
1982), there is amore efficient technique called the expectationmaximisation (EM)algorithm
(Baum et al, 1970; Dempster et al, 1977; Neal & Hinton, 1994; Amari, 1995) which is another
of the bases of the Helmholtz machine.

EM makes use of an equivalent form of equation 1:log p(dj�) = log "X� p(d; �j�)# (3)= X� P�jd log [p(d; �j�)]�X� P�jd log hP�jdi (4)= X� Q�jd log [p(d; �j�)]�X� Q�jd log hQ�jdi+KL hQ�jd;P�jdi (5)
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where P�jd = p(�jd; �) is the posterior probability of � given d, Q�jd is the probability
accorded to hidden state � by an arbitrary probability distribution Q�jd that depends on d
but need not depend on �, andKL hQ�jd;P�jdi =X� Q�jd log hQ�jd=P�jdi
is the Kullback-Leibler divergence from distribution Q�jd to distribution P�jd. DefineF(d; �;Q) as: �F(d; �;Q) =X� Q�jd log [p(�j�)p(dj�; �)]�XQ�jd log hQ�jdi : (6)

It turns out (Neal & Hinton, 1994) that F(d; �;Q) is minimised in Q for fixed d and � atQ�jd = P�jd, at which point KL hQ�jd;P�jdi = 0 and so � log p(dj�) = F(d; �;P).1 Neal &
Hinton (1994) showed that EM consists of alternating minimisation of F(d; �;Q) for all the
data d. During the E-step, F is minimised with respect to Q, leading to Q�jd = P�jd =p(�jd; �); during the M-step, F is minimised with respect to � assuming thatQ is fixed. The
log likelihood of the data is guaranteed not to decrease during each complete step. The
advantages of EM over simple gradient methods are that � can change by a large amount
during each step, and that no learning rate is required. Jordan &Xu (1993) and Xu& Jordan
(1995) show that for certain mixture models, EM adjusts the parameters in a direction that
has a positive projection onto the derivative of the log likelihood with respect to those
parameters, through a projection matrix that is a function of the parameters.

For mixtures of Gaussians, it is computationally simple to calculate the optimalQ�jd = P�jd,
because the number of hidden states that must be considered is equal to the number of
Gaussians. Given Q�jd,X� Q�jd log [p(�j�)p(dj�; �)] =X� Q�jd �log�� � 12(d� ��)T��1� (d� ��)� 12 log j��j�+K
where K is a constant. Q separates out the optimisation problems for each � making it
simple to adjust the parameters �.
Sampling Methods

Unfortunately, examples in which the sum in equation 1 can be performed exactly are rare.
We are interested in cases with large numbers of hidden units where it is unreasonable for
them all to be linear (whichwould nullify the point of havingmany layers in a hierarchy) or
for only one or a few to fire in response to a single input. Other probability density models1For later convenience, F is defined in terms of negative log probabilities, which is why it is minimised
rather than maximised.
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are appropriate here such as the Boltzmann machine or Bayesian networks, but optimising
their parameters is difficult. The Boltzmann machine (BM) is a case in point. For this, there
are n observable binary units, h hidden binary units, and probabilities are defined in terms
of energies p(d; �j�) = e�E(d;�)=TZ(T ) (7)

where E(d; �) = �Xi<j wijsisj �Xi bisi
where si is the binary state of the ith units, T is a temperature parameter,Z(T ) =Xe;� e�E(e;�)=T (8)

is called the partition function, and � = fwij; big is the collection of parameters.
Optimisation of the parameters � in the Boltzmannmachine can also be seen in terms of EM
and equation 4. Since there are h hidden units, the sums are over 2h possibilities. Worse, the
sum in equation 8 to calculate the partition function is over 2n+h possibilities. Hinton and
Sejnowski (1986) therefore used a Markov chain Monte-Carlo sampling technique called
Gibbs sampling (see Neal, 1993 for an excellent description of Gibbs sampling and other
Markov chain methods) to approximate averages such as those in equation 4 over the
posterior probabilities p(�jd; �). Gibbs sampling with clamped data d involves starting
with all the hidden units in some state, and considering each hidden unit in turn to decide
whether to change its state. The decision for unit i is stochastic and is based on the sigmoid
of the net input

Piwijsj + bi including contributions from the states of all the hidden
and the clamped units. With d clamped, the Gibbs sampling Markov chain has P�jd as its
equilibrium distribution, and so sample averages over states observed from the chain can
be used to estimate equation 4 and its derivatives.

It turns out that optimising � in the BMrequires two applications ofGibbs sampling. During
the “wake” phase, the observed data d are clamped on the n observable units, and Gibbs
sampling on just the hidden units is used to estimate the average hsisji+ of the correlations
between the activities of both hidden and observable units. During the “sleep” phase, no
units are clamped, and Gibbs sampling over all the units is used to estimate the averagehsisji� of the correlations between the activities of all the units when they are ‘running
free’. Gradient ascent in the log likelihood then corresponds to:�wij / hsisji+ � hsisji� (9)

There are two problems with the Boltzmannmachine approach to density estimation in the
face of hidden states. The first is the application of Gibbs sampling at all, since it is tricky to
knowwhen enough sampling has beendone to get sufficiently close to thermal equilibrium.
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The second is the subtraction of the two noisy terms in the update in equation 9. During
learning, these quantities get to be close to each other, and the signal in the difference gets
swamped by the noise, which adds across wake and sleep phases.

The sleep phase is required in the BM because equation 7 relates the probabilities of states
in terms of a partition function which it is intractable to compute. Bayesian networks (eg
Pearl, 1988) offer a hierarchical probability model that is unidirectional. In this case, there
is an ordering of the units such that one can write:p(fsigj�) = p(s1j�)p(s2js1; �) : : : p(sN jfs1; s2; : : : ; sN�1g; �)
where N is the total number of units. In typical Bayesian networks, the number of parents
that directly affect the conditional probability of a unit is fairly small.

Learning in Bayesian networks follows the pattern already established. Given observed
data d, the posterior probability distribution p(�jd; �) over the hidden units is calculated,
and gradient or analyticalmethods can be used to increase the log likelihood. In caseswhere
units have very few parents, it is computationally tractable to calculate the posterior prob-
abilities exactly, and also to represent the conditional probabilities p(skjfs1; s2; : : : ; sk�1g; �)
explicitly in tables. This makes adaptation very quick. However, many interesting models,
and particularly learned rather than intuited models, require more dependencies than can
be accommodated in this way.

Neal (1992) suggests using parameterised conditional densities for p(skjfs1; s2; : : : ; sk�1g; �),
specifically making this a sigmoid function of net input expressed through a set of variable
weights. He also describes a method for doing estimated gradient ascent in the log likeli-
hood using Gibbs sampling to estimate the posterior distribution. Unlike the update rule
in equation 9, there is no need for the sleep phase of learning, since the partition function
is 1, and Neal (1992) showed that this speeded learning.
Approximate Methods

ExperiencewithGibbs sampling suggests that existing samplingmethods are unlikely to be
adequately fast for complicated models, either for learning or for inferring hidden causes
from data once learning is complete. There is therefore reason to search for approximate
methods whose error of approximation can be bounded in some way. F(d; �;Q) defined
in equation 6 is a natural place to turn, for two reasons. First, since it is always true thatKL hQ�jd;P�jdi � 0, we know that� log p(dj�) � F(d; �;Q) (10)

with equality if Q�jd = P�jd. Second, the sums over the exponentially many � in equation 6
involve a probability distribution Q�jd that can be determined to make minimisation of F

7



tractable, instead of the distribution P�jd that in many cases requires an exponential sum
simply to be calculated.

Mean field methods are the paradigm in these cases. For either the BM (Peterson &
Anderson, 1987; Hinton, 1989) or Bayesian nets (Saul, Jaakkola & Jordan, 1995; Jaakkola,
Saul & Jordan, 1995), mean field methods take Q�jd to be factorial, ie they take all the
hidden units to be mutually independent given the data. Solving for the optimal factorial
distribution for the hidden units typically requires solving a set of consistency equations
and can be performed using a few iterations. Depending on the form of p(d; �j�) and the
mean field distributions, one can then use gradient descent or exact methods to update the
parameters � to minimise F(d; �;Q) using the factorial form of Q�jd to make this tractable.
The whole procedure amounts to minimising an upper boundF(d; �;Q) to the negative log
likelihood using the same alternating method as EM (estimate the best Q as a function of �
and then improve � using this Q) except that a bound is being minimised rather than the
real negative log likelihood, and there are restrictions on the form of Q (that it be factorial)
which prevent the E-step from being complete (the calculated Q�jd may not be P�jd).
TheHelmholtzmachine (Hinton et al, 1995; Dayan et al, 1995) is an instance of this technique,
except that rather than use mean field methods andmean field iteration to get a convenientQ�jd, it devotes a separate set of parameters � to model Q�jd and optimises F(d; �; �) over
these parameters too.

The Helmholtz Machine

Figure 1 shows an example of the Helmholtz machine. The top-down weights are the
parameters � of the generative model – a unidirectional Bayesian network in which units
are divided into layers with complete connections from units in layer Z to those in layer Y
and so forth (one could clearly use partial connectivity, or also connections that skip layers,
provided that the directed connection graph remains unidirectional). The generativemodel
is factorial within each layer – each unit in layer Y is independent of the others within the
same layer given the activities in the layer Z and the weights. Note that optimising the
parameters of this Bayesian network is intractable in the sense discussed above, since each
unit has many parents.

The bottom-up weights are the parameters � of the recognition model – another unidirec-
tional Bayesian network based on the same architecture as the generative model. The
recognition model is also factorial within each layer – but now the units in layer Z are
mutually independent given the activities in layer Y rather than vice-versa. There is no rea-
son to believe that the true posterior distribution p(�jd; �) is really factorial in this manner,
although the way the network is trained provides it with strong encouragement to choose
generative parameters � for which forcing this approximation is not disastrous.
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Figure 1: A three-layer Helmholtz machine. Weights � define a top-down generativemodel
in layers Z , Y and D of stochastic binary units. D are the observables, and the task for �
is maximising the probability p(dj�). Weights � define a bottom-up recognition model that
attempts to invert the generative model.

An alternative way to look at the HM is in terms of autoencoders. A HM with just one
hidden layer is exactly (a folded-over version of) the sort of autoencoder that Zemel (1994)
andHinton&Zemel (1994) treated. The recognitionmodel performs the coding operation of
turning inputs d into stochastic codes in the hidden layer; the generativemodel reconstructs
its best guess of the input on the basis of the code that it sees. Maximising the likelihood
of the data can be interpreted in terms of minimising the total number of bits (which is justF ) it takes to send the data from a sender to a receiver who knows the generative model
but not the inputs themselves.

There are presently two main variants of the Helmholtz machine. Both use gradient
methods to optimise F , but they use different types of bottom-up recognition model to
avoid the remaining exponential sums in (the derivatives of) equation 6.

The deterministic HM (Dayan et al, 1995) makes approximations inspired by mean-field
methods, replacing stochastic firing probabilities in the recognition model by their deter-
ministic mean values. The advantage of this is that one can use powerful optimisation
methods to update the parameters �; �. However, there are two main disadvantages. One
is that this replacement of random quantities by their means entails that the resulting recog-
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nition distribution Q�jd is trivial. Even though we are assuming that the hidden activities
within a layer are conditionally independent, there are correlations between the activities
in different hidden layers. These correlations are not captured in the deterministic HM.

The second disadvantage is that under the model we actually used, we did not have a
guaranteed bound on the likelihood – the term

P�Q�jd log [p(�; dj�)] in equation 6 was
not calculated tractably in a way that ensured the bound would be preserved. More
sophisticated methods (Saul et al, 1995; Jaakkola et al, 1995) could be used to repair this
problem. Even with these disadvantages, though, we showed this machine working on a
number of difficult unsupervised learning problems.

The stochastic HM (Hinton et al, 1995) captures the correlations between the activities in
different hidden layers, but at the expense of requiring sampling. However, because the
recognitionmodel is unidirectional, an unbiased sample can be obtained in a single forward
pass. The learning method for the stochastic HM is called the wake-sleep algorithm.2
During the wake phase, samples are taken from the recognition model, and the parameters� of the generative model are updated according to the sampled gradient of F . The weight
updates require nothing more than the completely local delta rule.

During the sleep phase, samples (fantasies) are generated top-down by the generative
model, and the parameters � of the recognition model are updated to make it better ap-
proximate the inverse of the generative model. The weight updates again require nothing
more than the completely local delta rule. Unfortunately, as discussed in Hinton et al
(1995), the recognition model is not being adjusted according to the gradient of F as de-
sired, but rather according to the gradient of KL hP�jd;Q�jdi where the data d are drawn
according to the generative distribution. This is the Kullback-Leibler divergence from
the true posteriors to those imputed by the recognition model rather than vice-versa. The
Kullback-Leibler divergence is not ametric because it is not symmetric, and the asymmetry
can be important. Nevertheless, the wake-sleep algorithm also worked well in practice,
including on a task which required it to build hierarchical generative models of 8�8 binary
images of handwritten digits and use the log likelihoods under eachmodel to perform digit
recognition.

The stochastic HMhas two important advantages over the BM. First, no iteration is required
to extract unbiased samples. Second, although there is random sampling error when
computing the weight updates, the fact that the top-down generative model is a Bayesian
net rather than aMarkov random field implies that it is at least not necessary to learn based
on the difference between two noisy samples (Neal, 1992).

Learning a model of the world and using samples from the model during an offline phase
to learn to invert that model has its parallels in DYNA, Sutton’s (1991) model-based re-
inforcement learning system. The equivalent of the recognition model in DYNA reports2Note that wake and sleep are used in a somewhat different manner from the BM.

10



the long run values of states in a rewarded Markov decision problem (MDP). Just like the
exponential sums in equation 1, it is intractable to calculate these values online even having
a full model of the MDP (which is like knowing �). DYNA uses sleep samples from the
model and temporal difference learning (Sutton, 1988; Barto, Sutton & Watkins, 1989) to
acquire the inverse.

3 Variants of the Helmholtz Machine

The main purpose of this paper is to describe a number of the variants of the Helmholtz
machine (HM) which we have explored. We have not attempted to provide an exhaustive
survey – there are also many other varieties. Few of the machines have been fully tested
and some are only really intended to provide baselines for the performance of other, more
sophisticated methods. Mean field methods that do not use separate sets of recognition
parameters (Saul et al, 1995; Jaakkola et al, 1995) are also under investigation.

Our explorations can be summarized as follows:

unit activation functions The original HM involved networks of binary stochastic sig-
moid, noisy-or (Pearl, 1988; Saund, 1995) or competitive (Dayan& Zemel, 1995) units.
Softmax, linear, and essentially all other unit types can also be used, and different
unit types can be intermixed in the same network. The wake-sleep algorithm is par-
ticularly convenient for this since it is not necessary to concoct different mean field
bounds for each new activation function. The case with just one hidden layer of linear
units and added Gaussian noise turns out to be equivalent to factor analysis.

reinforcement learning We have explored a reinforcement learning method (based on
REINFORCE, Williams, 1992) which optimises both � and � during the wake phase
(and therefore does without a sleep phase). Although it changes the recognition
model correctly according to the sampled gradient of F with respect to �, one can
expect it to scale poorly with network size in terms of convergence time.

alternative recognition models As a more sophisticated version of the deterministic HM,
we tried a form of backpropagation through time (Rumelhart, Hinton & Williams,
1986) to implement a recurrent recognitionmodel. We also tried including “dangling”
units that have no outgoing generative connections. Such units can be useful for
recognition and are theoretically attractive for modeling ‘explaining away’ effects
(Pearl, 1988). They can be trained using the conventional sleep-wake algorithm.
Finally, we considered integrating the HM with the BM, using a strictly top-down
generative model, as in the HM, but allowing recurrent connections within layers in
the recognition model.
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supervised HMs There are at least three different ways of using the Helmholtz machine
for supervised learning. Each builds a different form of conditional probability model
for the outputs given the inputs.

modeling temporal structure We have implemented a version of the HM designed for the
kinds of temporally sensitive tasks towhichHMMs are applied. The advantage of the
HM over HMMs is that it allows hidden states to have distributed representations,
and this can allow exponential savings (Williams & Hinton, 1991; Ghahramani &
Jordan, 1995). However, the HM is more difficult to train, since wake-sleep lacks an
equivalent of the forward-backward algorithm which permits future observations to
affect the posterior distributions over present states.

3.1 Unit activation functions

In one of its abstract forms, a Helmholtz machine consists of two uni-directional Bayesian
networks, one of which is the underlying generative model for data; the other of which
is responsible for producing an estimate of the posterior probabilities of the states of the
generative network given a datapoint. In most cases, there is no principled reason to use
exactly the same kind of model in the top-down pathway as in the bottom-up pathway.
Indeed, in the deterministic version of the machine (Dayan et al, 1995) that we used for
solving the 8-bit shifter problem, we used a particular competitive imaging model (Saund,
1995; Dayan & Zemel, 1995) for the output units that was inspired by the Integrated
Segmentation and Recognition architecture (Keeler et al, 1991).

We will describe some of the options in the case that unit i, whose activation is yi, receives
variable connections wji from units j whose stochastic activations are zj . For the wake-
sleep algorithm, one needs to specify the activation rule, namely how wji and zj interact
to generate a probability distribution over yi (for use in terms such as p(�j�) and p(dj�; �)),
and the derivative of the log probability of yi under this rule with respect to the variable
parameters. The deterministic version is slightly more demanding. Typically zj will
be stochastic, and will therefore generate a variety of probability distributions over yi
depending on their values. One should really sum over these distributions, weighted
according to the probabilities of the zj that generated them. However, this is usually
intractable, and one therefore needs some approximation to the net log probability of yi
and its derivatives. Arbitrary approximations can be made in the recognition distribution
without harming the fact that �F(�; �) is a lower bound on the log likelihood (although
they may have an adverse impact on its tightness). However, this is not true for using
these activation functions for the generative distribution – preserving the bound restricts
the allowable approximations. For most of the activation functions, there seems not to be
an obvious best approximation.

We have generally used standard exponential family units (Rumelhart et al, 1995). Table 1
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collects together the rules, and the derivatives of the log probabilities as a function of the
weights. Using the exponential family ensures the simple form for the derivatives; the
underlying factorial nature of the units in the networks ensures that only local information
need be used in updating the weights.

3.2 The Reinforcement Learning HM

The reinforcement learning framework REINFORCE (Barto & Anandan, 1985; Williams,
1992) can be used to adapt the parameters of both recognition and generative models
according to unbiased sample derivatives of F . For an HMwith two hidden layers, Y andZ , one can write F as a sum over the exponential number of settings for the states of the
hidden units (� = fy; zg) weighted by the recognition probabilities of those units.F(d; �; �) = �Xy Qyjd;�Xz Qzjy;� log [p(djy; �)p(yjz; �)p(zj�)]�H hQ�jd;�i�H hQ�jy;�i (11)

where H [Q] is the entropy of distribution Q and we are explicitly using the conditional
factorial form of Q to write Qy;zjd;� = Qyjd;�Qzjy;�. Gradient descent in F requires us to
calculate the derivatives of F with respect to � and �.
The gradient with respect to � is@@� [F(d; �; �)[ = �Xy Qyjd;�Xz Qzjy;�@ log [p(djy; �)p(yjz; �)p(zj�)]@�
which is in the form of an expectation over the recognition distribution. Using one or more
stochastic samples produced by the recognition model and averaging� @@� log [p(djy; �)p(yjz; �)p(zj�)]
for those particular samples provides an unbiased estimate of the gradient of F(d; �; �). This
is exactly the analysis underlying the wake phase of the wake-sleep algorithm.

The gradient of F(d; �; �) with respect to � cannot apparently be calculated in quite the
same manner because terms in the recognition distribution such as Qyjd;� depend on �.
However, the recognition model is factorial and this restores sampling as a credible option.
For instance, if there are n units in layer Y and qj � p(yj = 1jd; �) = �(Pj �yijdi) where �yij
are the recognition weights into layer Y and di are the activities of the input units, thenQyjd;� = nYk=1 qykk (1� qk)1�yk
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Type Range pi p(yi) @ log p(yi)=@wji
sigmoid f0; 1g 11 + exp(�Pj wjizj) pyii (1� pi)1�yi (yi � pi)zj
softmax f1; ::; ng exp(Pj wyijizj)Pk exp(Pj wkjizj) pyi (�kyi � pk)zj
noisy-or f0; 1g 1�Qj(1� wjizj) pyii (1� pi)1�yi 1pi (yi � pi)zj
competitive f0; 1g 1� 11+Pj wjizj pyii (1� pi)1�yi 1� pipi (yi � pi)zj
Gaussian < exp(�(yi�Pj wjizj)2=2�2i )p2��2i pi 1�2i (yi �Pj wkizk)zj

sigmoid For the deterministic machine (Dayan et al, 1995) when the zj are also Bernoulli, we calculated @ log p(yi)=@wji
for the sigmoid under the assumption that

Pj wjizj is approximately Gaussian and used a table (Hinton & van
Camp, 1993) for the effect of composing a normal distribution and the sigmoid.

softmax This is for the case inwhich i is an n�valued unit, with input weights for the kth value ofwkji, and the derivative
of the log probability is with respect to wkji.

noisy-or For the noisy-or (Pearl, 1988; Saund, 1995), zj are also f0; 1g, and 0 � wji < 1 are interpretedas the contributions
to the probability that if zj is 1 then yi is 1. For the deterministic machine, if qj = p(zj = 1), we made the
approximation of using p̂i = 1�Qj(1� qjwji) to calculate F and its derivatives.

competitive For the competitive rule (Dayan & Zemel, 1995), zj are also f0; 1g, and 0 � wji are interpreted as the
contributions to the odds that if zj is 1 then yi is 1. For the deterministic machine, if qj = p(zj = 1), we made the
approximation of using to calculate F :p̂i = �1� 11 +Pj wjiqj� 1�Yj (1� qj wji1 + wji!

Gaussian See Neal et al (in preparation) for the way in which the linear and Gaussian HM implements factor analysis.

Table 1: Unit activation functions.
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and so, just as in Williams’ (1992) REINFORCE framework:@@�ijQyjd;� = Qyjd;� @@�ij log qyjj (1� qj)1�yj : (12)

This has the leading term Qyjd;� and so when it is substituted as part of the derivative,
equation 11 takes the form:@@� [F(d; �; �)] =Xy Qyjd;�Xz Qzjy;�D(d; �; �) (13)

for a particular function D, and therefore also involves just an expectation over the recog-
nition model. This means that it can again be calculated by averaging over recognition
samples. However, whereas the derivatives with respect to � only involve two adjacent
layers, those involving � are not local. The derivative with respect to a �ij which helps
determine Qyjd;� depends on terms in the sum in equation 13 from layer Z and all higher
layers (if there are any). Although this information is just a scalar (it is essentially the
contribution to F from the layers above Y), it can be expected to be very noisy, given
stochasticity in the recognition model. This will make learning very slow. Another way of
looking at this is that the bandwidth of the information from higher layers used to change�ij is very small, and as the network gets deeper, the problem gets worse. ARP and other
static reinforcement learning algorithms suffer the same problem. However, this and its
variants are the only methods of which we are aware for correctly optimising recognition
weights.

3.3 Alternative Recognition Models

Recognition models lie at the heart of the HM. Since there is no reason to believe that the
best possible top-down generative model will have an inverse that can be represented in
the bottom-up and conditionally factorial model that we assume, we have explored more
complicated recognition models that have greater representational power.

Recurrent Recognition

In a deterministic context, an obvious approach is to abandon the recognition model and
use sophisticated mean field methods (Saul et al, 1995; Jaakkola et al, 1995). These involve
an iterative approximate E-step, followed by either a hill-climbing M-step or an exact M-
step. They have the strong advantage that they only use the generative weights – they do
not need two sets of parameters, are not hampered by the inaccuracies that can plague the
recognition model, and can easily perform the E-step based on partial information about
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the input. However, the iterative E-step inmean fieldmethods can cause problems. During
the M-step, the generative weights are changed to reflect the probability of the input given
the model. The E-step is merely an instrument of finding the posterior distribution of
the parameters given the model. However, changing the generative parameters can also
make the E-step more difficult – it can make the iteration more prone to local minima. The
weight changes are completely insensitive to these difficulties. Problems arising from this
have been reported formean fieldmethods in Boltzmannmachines (Hinton, 1989; Williams
& Hinton, 1991). Further, even if the mean field methods settle correctly to the factorial
distribution that most closely matches the true posterior distribution, this distribution may
still be inferior to the one produced by a stochastic recognition net. The mean field method
assumes a globally factorial distribution rather than one in which the factorial distribution
in one layer is conditional on the stochastic binary states in the previous layer.

An alternative is to use iterative (ie recurrent) recognition models in the deterministic HM.
We address the concern about the difficulty of iteration in two ways. First, the recognition
model has its own set of connections �which change to minimiseF as before. Changes to �
are consequent on changes to �, but only through the medium of F . Second, we allow only
a fixed and small number of iterations and use the terminal distribution as Q. Keeping the
number of iterations fixed implies that the network is being specifically required to produce
good recognition distributions quickly. Any of the recurrent backpropagation algorithms
(Rumelhart et al, 1986; Williams & Zipser, 1989; Schmidhuber, 1992) can be employed. It
is not clear how best to design the recurrent connections. One obvious choice is to make
them also respect the layered structure of the network – making two top-down connections
between adjacent layers, one for the generative model and one the recurrent half of the
recognition model. Recurrent connections that skip layers are also possible.

Note that it would be unwise to employ recurrent generative connections. This would
make the system back into something like a Boltzmann machine, and would reintroduce
the need to calculate the partition function.

Dangling Units

Oneof the keyattractions of Bayesiannetworks is that they capture an effect called explaining
away. Figure 2a shows an example, where two binary hidden units, y1 and y2 are each
unlikely under the generative model p(y1 = 1j�) = p(y2 = 1j�) = 0:1, but at least one of
which is necessary to explain a case in which d = 1. In this case, the posterior probabilities
for the four possibilities for y1 and y2 given that d = 1 are roughly:
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y1 y2 p(y1; y2jd = 1; �)0 0 0:000 1 0:471 0 0:471 1 0:05
Therefore, given that d = 1, it is highly likely that just one of the yi = 1, and very unlikely
that they are both on. However, under the recognitionmodels thatwe have so far discussed,
there is no interaction between y1 and y2 and so it is impossible to capture the negative
interactions between these units. This is a form of the ubiquitous xor problem.
The Boltzmann machine would have no trouble doing this, using a large and negative
weight between these two units, but taking advantage of this would require iteration or
sampling in the recognition pathway. Figure 2b shows an alternative – using a ‘dangling’
unit �y in the recognition pathway. This unit receives a recognition connection from the
input and has recognition and generative connections to y1 and y2, but it lacks a generative
connection into d.3 Unit �y therefore only plays a role in the recognition model. Using the
weights shown in the figure, �y is almost certainly off if d is off, and otherwise comes onwith
probability 1=2. This stochastic choice in the recognition model between making �y = 0 or�y = 1 chooses between y1 = 1 and y2 = 1, as required to solve explaining away correctly.
The advantage of dangling units is that no modification is required to the wake-sleep
algorithm to learn their weights. The disadvantage is that one may in general require an
unreasonably large number of such units.

Other Sampling Methods

Instead of placing all of the responsibility for inverting the generativemodel on the bottom-
up connections, these connections can be used to facilitate more powerful methods for
inverting the generative model. Even though the bottom-up model alone is insufficiently
powerful to invert the generative model, in conjunction with forms of stochastic sampling,
the inversion can be made exact. The better the recognition model, the faster the learning
that can result, but, with sufficient sampling, using an incorrect model would have no
adverse consequences on the resulting generative model.

Consider the standard HM with two hidden layers. When an input d is presented, the
Gibbs sampling algorithm is a Monte-Carlo method of flipping the states of the hidden
units in layers Y and Z which defines a Markov chain whose equilibrium distribution
is p(y; zjd; �). As discussed above, this can be used to perform an approximate E-step,3RadfordNeal (personal communication has suggested a similar architecture, except that �y actually receives
a generative connection from the input d.
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Figure 2: Dangling units. (a) Theweights and architecture of a generativemodel thatmakes
it improbable that both y1 and y2 come on together, but requires one of them to explain d = 1.
There are no settings of the recognition weights � that permit this. (b) Including a dangling
unit �ymakes recognition possible using the weights shown. In practice, when the dangling
unit learns using generative weights from y1 and y2, it prefers somewhat non-symmetrical
solutions. The arrows without a starting unit are biases. The weights are learned, and are
not quite at their final values.

and the M-step involves averaging appropriate weight changes over the resulting sample
distribution. One way in which the recognition model can be used is to initialise the states
of y and z by sampling successively fromQyjd;� andQzjy;�. If the recognition model awards
high probability to hidden states that are likely to generate an input, then this will speed
Gibbs sampling. Indeed, it turns out to work surprisingly well. Since under this scheme,
the recognition model plays no further part in the sampling and the process of reaching
equilibrium washes out biases due to the initial distribution, errors in the recognition
model cannot jeopardise learning of the generative weights �. However, equilibrium can
be reached faster when starting from a good bottom-up distribution.

A more complicated alternative (de Sa, personal communication) is to use the recognition
distribution in the context of a Metropolis sampling algorithm (Metropolis et al, 1953). This
algorithm is also based on a Markov chain with a correct stationary distribution as defined
by �. However, instead of updating just one single unit at a time as in Gibbs sampling,
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a candidate update to the states of a large number of units is suggested according to a
proposal distribution. This candidate update is then accepted or rejected according to an
acceptance distribution. Proposal and acceptance distributions act in consort, in our case,
to satisfy a condition called detailed balance which ensures that the chain’s stationary
distribution is p(y; zjd; �), as required. The speed of the Metropolis algorithm is governed
by the probability that large jumps in the states of many units (to ensure rapid mixing) will
frequently be proposed and then accepted, and there is a large canon of knowledge about
good distributions to use. In our case, the recognition model � or the generative model �
could be used to propose updates to states onewhole layer at a time, provided that the way
that each fails to account for the other is taken into proper account.

Unfortunately, it is not clear how much computational effort can be saved over Gibbs
sampling through the use of such Metropolis algorithms. The computational effort in
calculating a proposal for a change to all the units in a layer and the associated acceptance
probability is, to within a constant factor, equivalent to the amount of effort involved in
considering each unit in the layer in turn as in Gibbs sampling. Although there are cases
such as ‘explaining away’ (the xor-like problem addressed by dangling units in which
just one of two units in a layer needs to come on) in which Gibbs sampling faces large
energy barriers to appropriate sampling, the simplistic form of the recognition distribution
into a layer (which is factorial and has no hidden units from the layer below) makes the
recognition model equally incapable of correctly proposing appropriate candidate states.
More powerful recognition models need not, of course, be so hampered.

The Lateral HM

Although it is computationally convenient to force the hidden activities within a layer to be
conditionally independent given the activities in the layer below (including the activities
of any intermediate dangling units), this is far from true in the cortex. Cortical areas
are replete with short- and long-range excitatory connectivity and at least short-range
inhibitory connections, and recent results suggest that these are important for generating
even the simplest properties of receptive fields, such as orientation selectivity (Douglas,
Martin &Whitteridge, 1989; Somers, Nelson & Sur, 1995; Ben Yishai et al, 1995).

If recurrent connectionswere incorporated into the generative pathway, then theHelmholtz
machine would become exactly a Boltzmann machine (BM), and would inherit the BM’s
problems of using the difference between two noisy estimates of the correlations between
units for learning. However, if the recurrence is introduced only into the recognitionmodel,
and the generative model is left purely top-down, then at least some of the difficulties are
absent. Sampling will still be necessary during recognition, but the approximate M-step in
the generative parameters will continue to use just the delta rule based on these samples.
If, furthermore, the recognition model is not made fully recurrent, but is only allowed to
have links between units within single layers, then more of the problems vanish.
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Figure 3: The Lateral HM. � is a standard generative model; � an altered recognition model;
and ! are recurrent weights within layer Y . Only some of the recurrent weights are shown.
Figure 3 shows an example of a lateralHM. � parameterises a standard top-down generative
model; � a slightly altered form of bottom-up recognition model, and ! are recurrent
weights within layer Y . Units in Y need not be fully connected with each other – it is
known that there is a tendency for lateral connectivity in the cortex to be mostly local.

This way of incorporating lateral recognition connections makes the recognition model a
series of simple, supervised Boltzmannmachines, one for each hidden layer. In one scheme
for using these Boltzmann machines, during the wake phase, each hidden layer is allowed
to settle for a while using stochastic Gibbs sampling and then a sample is taken from the
equilibrium distribution. This sample provides the bottom-up input to the next layer. To
reduce the delays it would probably be sensible for each hidden layer to start settling
to equilibium before the layer below has settled on its final sample. After completing a
bottom-up pass in this way, the generative weights can be learned in the standard way.

In the sleep phase, the top-down generative weights are used to produce a sample y+
from the generative model and the lateral weight between unit i and unit j in layer Y is
incremented by �y+i y+j . This corresponds to the positive phase of the Boltzmann machine
learning algorithm. Then, holding the activities in the layer below fixed, each layer is
allowed to settle in turn (with activities y�) and the weights are decremented by �y�i y�j ,
which implements the negative phase of Boltzmann machine learning. The bottom-up
recognition weights are learned exactly the same way. As with the standard wake-sleep
algorithm, the sleep phase minimizes the wrong Kullback-Leibler divergence, but this

20



problem gets less serious as the recognition model gets more powerful.

Compared with a multilayer Boltzmann machine, this algorithm has distinct advantages.
In the positive phase of the Boltzmannmachine learning, no settling is required because the
generative model is acyclic. In the negative phase, each layer settles separately and under
the influence of bottom-up input. This is much more constrained, and hence much easier,
than the usual unconstrained settling in the negative phase of an unsupervised Boltzmann
machine. In a sense, the wake-sleep algorithm allows us to piece together many small
Boltzmann machines without having to do any global settling.

It is obviously possible to apply this algorithm with fixed lateral recognition connections.
The generative connections above a layer then have to adapt to model the effects of the
lateral interactions within the layer acting on the input coming from the layer below. We are
currently investigating this approach to see if sensible fixed patterns of lateral interactions
make it easier for the network to extract hidden properties that vary smoothly across space.

There are also other ways of using Boltzmann machine learning within a Helmholtz ma-
chine. We canmotivate one by considering the problem of Gibbs sampling in the generative
model. Given the input d and the states of the top level units z and the other units in layerY , the probability distribution used to decide on the state of unit yi is:p(yi = 1jz;d; fyjgj 6=i; �)p(yi = 0jz;d; fyjgj 6=i; �) = p(djyi = 1; fyjgj 6=i; �)p(djyi = 0; fyjgj 6=i; �) p(yi = 1jz; �)p(yi = 0jz; �) : (14)

This representation in terms of odds rather than probabilities will turn out to be very
convenient later. yi is a sigmoidal unit and so its weights can be interpreted in terms oflog odds. Such contributions can just be added. Given a particular state z of the top level
units, the second fraction in the product is directly available from the top-down generative
connections into yi. Unfortunately, even given a particular state of the input units d and
a correct recognition model, the first term in the product is not conveniently available in
the bottom-up recognition connections, since it depends not only on the input, but also
on the states of the other hidden units fyjgj 6=i. One can imagine ways that this could be
calculated – activity in layer Y could inhibit those portions of the activity in layer d that
it can predict (MacKay, 1956; Pece, 1992; Miller, Li & Desimone, 1991), making the net
input to layer Y a function of the unpredictable components of d. Unit i could sample to
determine how changing its state affects these residuals, averaging out the effects of the
simultaneous sampling of the other cells in layer Y . However, this is not computationally
very reasonable.

Rather than do this, an alternative lateral Helmholtz machine would use the bottom-up
recognition connections to try to calculate just:�i1� �i = p(djyi = 1; �)p(djyi = 0; �) ;
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and use the Boltzmann machine recurrent connections within the layer and/or top-down
influences to capture the other terms in equation 14. Note that �i is notwhat the recognition
model learns using the wake-sleep algorithm, this is rather:qi1� qi = p(yi = 1jd; �)p(yi = 0jd; �)
which is equivalently incorrect in terms of ignoring the states of the other fyjgj 6=i (this is the
familiar approximation of a conditionally factorial recognition model). The advantage of
learning �i rather than qi as the bottom-up contribution to deciding whether unit yi should
be on or not is that it is easier to combine it with other top-down or lateral influences onyi.4 Learning this different � turns out to be simple, in the sleep phase, instead of using the
straight delta rule: ��ij = �(yj � �(Xk �kjdk))di
the learning rate � is modified according to the probability pj that yj came on in the sample
in layer Y used for learning:��ij = �(yj � �(Xk �kjdk))di(yj(1� pj) + (1� yj)pj): (15)

If yi is a sigmoid unit, then the bottom up input determining �i acts like an input-dependent
bias log [�i=(1� �i)] that can be combined with:
1. another simple constant term log [p(yi = 0j�)=p(yi = 1j�)] that modulates the activity
of yi by subtracting out the statistical bias in �i arising since �i depends only on
the generative weights between two layers. This would be good for fast bottom-up
recognition.

2. top down information from z in the form of log [p(yi = 1jz; �)=p(yi = 0jz; �)]. This
would be good for Gibbs or Metropolis sampling in cases where there are prior
expectations or missing input data.

3. Gibbs sampling in the intra-layer Boltzmann machine defined by weights !jk. In
this case, the input bias is constant, and the intra-layer weights can capture two sorts
of correlations between yi and yj. One comes from the contributions to p(djyi =1; fyjgj 6=i; �) from fyjgj 6=i, the other comes from the possible influences from z, which,
at least in the recognition model, are clearly just a function of y.4Although qi1�qi = �i1��i p(yi=0j�)p(yi=1j�) , and the last term is just a bias that does not depend on the input d and can

easily be learned during the sleep phase, the inability of the recognitionmodel exactly to invert the generative
model means that best settings for the actual weights � may differ. Also, learning �i may be easier than
learning qi since it only depends on the generative weights between two layers and not the whole generative
distribution above the upper layer.
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The first two options do not require substantive changes to wake-sleep or the way that
recognition is performed after learning. For the Boltzmann machine, we need to specify
how all the weights will be modified. The sleep phase is as for the standard HM, with
no iterative processing in layer Y . Equation 15 is used to change the recognition weights,
and the lateral weight �jk between units yj and yk is increased according to the observed
correlations in the activities of units hyjykiS . During thewake phase, the bottom-upweights
are used to calculate the input-dependent bias for yi, and then standard Boltzmannmachine
Gibbs sampling is performed (using some annealing schedule) to reach the equilibrium
distribution. Once at equilibrium, further sampling is performed, the generative weights�ji out of layer Y are altered using the conventional wake-phase delta rule, and the lateral
weight �jk is decreased according to the correlations in the activities of units hyjykiW . This
particular form of contrastive Hebbian learning (Hinton & Sejnowski, 1986) for the lateral
weights is intended to reduce the Kullback-Leibler divergence between the distribution
of y under the generative model p(yj�), and the Gibbs sampled distribution under the
recognition model Ed [p(yj�;d; !)] where the expectation is taken over the environmental
distribution over the inputs d.
3.4 Supervised HMs

We have described the HM in the general setting of density estimation which is character-
istically thought of as unsupervised learning. However, supervised learning can be seen
in similar terms where the task is to learn the conditional densities p(dje). Here, e is the
classical ‘input’ and d the classical ‘output’. Ghahramani & Jordan (1994), Tresp et al (1994)
and others have adopted various versions of this framework, using mixtures of Gaussians
or hidden Markov models as the underlying density estimation devices. There are equiv-
alently various ways to use the HM for supervised learning. For classification tasks, we
reported the results of the most trivial way, in which a different density model is built for
each class using the labelled training data. Subsequent classification is based on presenting
the test data to each of the density models and classifying it probabilistically according to
the free energy of each.

Figure 4 shows the icons which we will use to describe the various novel versions. The
rectangular boxes are layers of units; the solid lines are recognition connections, the dotted
lines are generative connections. The black filled-in box is e, which is always known; the
grey filled-in box is d, the desired output, and the empty boxes are hidden layers. We show
just restricted numbers of hidden layers, but, in principle, arbitrary numbers could be used.

The architecture in figure 4 is inappropriate for supervised learning for HM. It is based on the
technique used by Ghahramani & Jordan (1994) for fitting a density model to p(d; ej�). In
their case, it was straightforward to integrate this density over the unknown d to generatep(dje; �) = p(d; ej�)=p(ej�). In our case, not only is it unclear how to do this integration, but
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Figure 4: A joint densityHM. Solid lines are recognitionweights, dotted lines are generative
weights, the boxes are layers of units, y and z are hidden units, e (black box) is the input,d (grey box) the output. This machine would not work well.
also the recognition model will have learned to generate the correct posteriors as a function
of both d and e. If d is not present after training, then its estimates of Q will be incorrect.
Gibbs sampling or theMetropolis HM could be used for this missing data problem, but this
is unlikely to be as good as the alternatives below. Supervised learning is not a conceptual
problem formean-fieldmethods since they generate a new recognition distribution for each
case, and treat missing inputs and true hidden units uniformly.

The Side-informationHM Figure 5a shows a supervised learningmachine that does work.
The task for the machine is to be able to generate the distribution p(dje). We can therefore
treat e as providing extra input (equivalent to side information in terms of communication
theory) to both recognition and generative pathways during learning and subsequent use.
In the version shown, there are no additional hidden units between e and y or z, and
therefore completely standard wake-sleep learning can be used. If the deterministic HM is
used, then there can also be hidden units on the two sets of outputs of e whose roles are
determined during optimisation.

The Clipped HM: Figure 5b shows an alternative supervised model that also works. If e
is substantially informationally richer than d, it may be best to generate hidden represen-
tations by fitting a density model to e, and use those hidden representations to generate
samples over d. This may also be the method of choice if there are substantial unlabelled
data – hidden representations for e can be learned without needing to know d. Stan-
dard wake-sleep is used to train the connections on the e pathway; the extra generative
connections to d are trained during wake phases once the weights for e have converged.
The Inverse HM: Figure 5c shows a third possibility for a supervised machine which
takes direct advantage of the capacity of the recognition model in the HM to learn inverse
distributions. For supervised training, duringwake, e andd are clampedand the generative
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weights are trained asnormal. During sleep, the systemuses itsmodel of p(dj�) and p(ejd; �)
to learn the inversemodelsQdje andQzjd. After training, the units aboved can be discarded,
since the recognition distribution Qdje itself is the desired output. In some cases (such as
recognising handwritten images of digits) the distribution over d will be known (0 : : : 9,
each equally probable), in which case the layers above d are unnecessary, and during sleep,d should be sampled from this prior distribution.
The inverse machine is quite similar to the clipped machine. It differs in the way that d
influences the sleep phase. The inverse machine is likely to be appropriate in cases such
as digit recognition in which it is reasonable to regard the dependent variable d as being a
high level ‘cause’ of the independent variable e.
The inverse machine is also close in spirit to the neural heat exchanger, an algorithm
proposed by Jürgen Schmidhuber (personal communication). The neural heat exchanger
employs the portion of the network between e and d and has two complete sets of units,
one for the top-down pathway and one for the bottom-up pathway. The heat exchanger
only uses the wake phase of learning, and, on presentation of d and e, it samples fromd in the top-down network and from e in the bottom up network. The idea is that the
activities of the units at the same layer in the two networks should be the same – and so
simple delta rule learning, as in wake sleep, can be used, with the activities in each network
being the target for learning the weights in the other. The trouble with the heat exchanger
is that in non-deterministic domains, there is no reason why the particular e generated
from a particular d should be the one that is observed – in terms of the digits, there is
no reason why the top-down network should generate exactly the same image of a 0 that
the bottom-up net sees for a particular training case. Wake-sleep learning overcomes this
problem by using completely separate learning phases for the two classes of weights.

3.5 The Helmholtz Machine through Time

The major disadvantage of conventional HMMs is the impoverished nature of their repre-
sentation of states. AMarkovmodel can only be in one state at a time, and it is only by being
in different states that it can preserve information over time (by the Markov property). So
if the states use local representations in which a single hidden unit is active, the number of
units required is exponential in the amount of information that needs to be held (Williams
& Hinton, 1991; Ghahramani & Jordan, 1995). If the states are represented in a distributed
manner, the number of hidden units required can scale linearly with the amount of infor-
mation held in a state, but unfortunately learning and inference still seem to involve the
exponential sums of equation 1.

HMs (and similarly mean field methods, Saul & Jordan, 1995) offer the same way out
of the impasse that they did for complicated static generative models. For the E-step,
they use recognition distributions for the hidden states that are not the exact posteriors
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Figure 5: Supervised Helmholtz machines. a) The side-information HM explicitly builds a
conditional probability density function using the known e like side information in coding.
b) The clipped HM builds a density model of the known e and uses its hidden states to
build a generative model of the unknown d. c) The inverse HM builds generative models
of the unknown d and a conditional model of the knowns e given the unknown and uses
the sleep phase to learn to invert this model.

under the generative model, and use gradient descent for the M-step on the basis of these
distributions.

The HMTT is shown in figure 6. As in backpropagation through time (Rumelhart et al,
1986), weights are shared across timesteps, so that the amount of hardware required is
fixed. There are two directions of generative influence; top-down generation within a
timestep, just as in the static HM, and sideways generation between timesteps, in which the
units in one layer at one timestep affect units in the same layer at the subsequent timestep.5
In the most straightforward implementation of the HMTT, these two influences are just
added together before imposing the non-linearity. A complete generative sample from the
network therefore consists of:

1. For the first time-step, generate activities z1, y1 for units starting at the top using only
top-down generative weights;

2. For the second and subsequent time-steps, combine top-down activities in the current5It would be equally easy to have generative connections across time such that units in one layer at one
time influence units in lower or higher layers at subsequent times.
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Figure 6: The Helmholtz machine Through Time. This shows the first two timesteps for a
three-layer HMTT. Only one unit per layer is shown for convenience. Note that recognition
(solid) and generative (dotted) connections both point in the direction of increasing time.
More complicated architectures are also possible with direct connections from the input
units at one time to the inputs at the next, or links that cross layers over time. The
recognition and generative biases for the first timestep can be different from those for
subsequent timesteps.

timestep with sideways activities from the previous timestep to determine the new
generative probability for a unit, and sample from this generative probability to
determine the new activities.

Since the first time-step lacks sideways influences, it is reasonable for it to use different gen-
erative biases (Frey, personal communication) from those used for subsequent timesteps.

If these are the only generative connections, then the overall generative model is clearly
an HMM, where the output model is captured by the connections to the visible layer.
Recognition in this context requires taking a sequence d1;d2; : : : of observed outputs and
determining the posterior probabilities:P(y1;y2; : : : ; z1; z2; : : : jd1;d2; : : : ; �)
over the states of the units in the hidden layers. Note that the posterior probabilities
are not causal, ie it is not necessarily true that p(y1; z1jd1;d2; : : : ; �) can be expressed asp(y1; z1jd1; �). Given their localist representations of states, standard HMMs use the com-
putationally efficient forward-backward algorithm (Baum & Eagon, 1967) to incorporate
information from the future into state occupancy probabilities.
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TheHMTT uses a set of adjustable parameters �which specify a simpler recognition modelQy1;y2;:::;z1;z2;:::(d1;d2; : : : ;�). In the simplest case this is a causal model, though it need not
be so. As for generation, there are influences on recognition states from both the current
and the previous timesteps, and these are additive. Recognition therefore proceeds as:

1. For the first time-step, sample activities for units bottom-up as in a standard wake
phase recognition pass using the first observed data d1.

2. For the second and subsequent time-steps, combine bottom-up influences based on
the observed data dt with sideways influences from the previous hidden states yt�1
and zt�1 to determine the new recognition probabilities for the units. Sample from
these to produce the states of the hidden units.

Although generative and recognition connections within a time-step are in their con-
ventional opposed directions, recognition and generative connections from the previous
timesteps are in the same direction – they both point forward. Theywill not in general have
the same numerical values.

Not only is this making the standard assumptions of the static HM that the recognition
model is conditionally factorial, but also, by being causal, it is ignoring errors in setting
states that could be fixed by information from future observables. Consider the case in
which there are two hidden states � and � that at time t are equally probable under the
true posterior, given only the information d1; : : :dt. At time t, the HMTT chooses just one
of � and � with probability 0:5, and, unlike forward-backward based schemes, does not go
back and revise its choice in the light of subsequent observations dt+1; : : :. Failing to do
this in the static case is the problem that prevents Schmidhuber’s neural heat-exchanger
from working well. Causal or on-line recognition is computationally and neurally very
attractive, however, since it is inconvenient to have repeatedly to backtrack and revise ones
estimates. Limited temporal dependencies in the recognition and generative models can
be incorporated through connections from further back in time than just the last timestep.
Recognition connections from observed data from further into the future can also be used
(Neal, personal communication) to attempt to provide the recognition model with the non-
casual information really required for correct inference. In the latter case, the state of the
system at time t cannot be picked until time t+ � , where � is the farthest future time that is
allowed to influence the posterior distribution at the present.

Thewake-sleep algorithmcanbeused to train theHMTT.Asbefore, thewakephase consists
of presenting complete sequences of observed inputs, picking hidden states according to
the recognition model, and training all the generative weights using the delta rule. The
sleep phase consists of generating sequences of hidden and observable states from the
generative model, and training the recognition model to be its inverse, again using the
delta rule. The fact that there are both recognition and generative connections in the same
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direction between hidden units at adjacent timesteps causes no problems. For wake-sleep,
it is essential only that neither the recognition model nor the generative model contain
directed cycles. Unfortunately, unlike for the temporally insensitive case, in the absence of
information from the future (aswould beprovided by ‘lookahead’ recognition connections),
no learningmethod canmove down the gradient of the log-likelihood. It therefore becomes
an empirical question as to how well it works (Hinton et al, 1995).

4 Discussion

We have described the original version of the Helmholtz machine and a number of closely
related machines that have been designed with different tasks or mechanisms in mind, eg
the supervised machines, the Helmholtz machine through time and the lateral HM. What
relevance do any of these machines have to cortical processing and the four questions
underlying this special issue?

In our models, the computational goal for unsupervised learning is probability density
estimation. Along with Kawato, Hayakama & Inui (1993), we claim that the cortex builds a
complex and hierarchical generativemodel6 of its inputs, where the layers in the hierarchy
roughly correspond to areas in the sense of Felleman & Van Essen (1991). The neurons
in these areas are the hidden units, and they represent structure in the generative model.
For instance, in a generative model of images of digits, hierarchical hidden structure might
consist of such choices as which digit, what font, what curlicues, etc. The process of
setting the weights of the connections between the neurons (and possibly determining the
connections themselves, Friedlander & Martin, 1989; Antonini & Stryker, 1993) to improve
the generative model gives the hidden units their functions. Although Barlow has not
stressed so greatly the issue of learning probabilistic models of the inputs, the final roles
accorded to the hidden units turn out to be closely analogous to his suggestions that
neurons should respond to few patterns (be sparse), that neurons with common targets
should generally fire in a somewhat independent manner (be factorial or decorrelated), and
that they should respond to statistically surprising conjunctions of their inputs. However,
all these desiderata are secondary to the main goal of density estimation.

As far as the coding scheme adopted by cortex is concerned, the HM is somewhat agnostic.
Muchof theworkonunsupervised learning as activitydependentdevelopmenthas focused
onbottom-up learning, and is drivenbyobjective functions such as the sparseness ormutual
independence of activities. Mutual independence is good, for instance, since later stages
can combine information without having to build very complicated probability models.
However, these metrics are somewhat unsatisfying since they are not couched in terms of a6This model is sometimes called a forwardmodel, but since we see it as being top-down, we have avoided
use of this terminology.
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whole goal for development. For instance, there are probablymany sources of independent
noise afflicting the inputs, but it would be unfortunate were cortex to arrange for mutual
independence by filtering out the signal in favour of the noise. By contrast, the HM has
optimal density estimation as its underlying motivation – and doing this correctly requires
inducing the statistical structure of the inputs. There will be cases in which this will entail
that the hidden activities it forms will be sparse, but sparseness itself plays no particular
role. Equally, theHMcanworkwith local softmax groups within a layer, which is a popular
reading of the effect of short-range cortical connectivity, provided that they are combined in
a factorial manner. The lateral HM points towards learning methods for such intra-cortical
connections, but needs further exploration.

With Carpenter & Grossberg, (1987), Kawato et al (1993) and Mumford (1994), the HM is
clearly not so agnostic about the existence of internal models of the world and the role of
top-down and bottom-up cortical connections in learning those models and their inverses.
In particular, the wake-sleep algorithm (Hinton et al, 1995) can be used to make precise
hypotheses about the nature of the learning that occurs in both sorts of connections.

Model building is the main aim for the HM. There is something slightly unsatisfying about
thiswhich emerged in someof the simulations forHinton et al (1995). We tried taking images
of all ten digits and training one large and deep density model on the whole collection. We
had expected that themost significant structure in the input would be the identity of a digit,
and that units towards the top of the hierarchy would tend to respond to just one digit, or
maybe even at a finer granularity than that – just one style of one digit. Structure in the
world, in terms of the way we interact with it, should be matched by statistical structure
that the HM or other density estimation devices can extract. However, the HM did not
separate out the digits in this manner – top level units were not digit specific. Worse, it
turned out not even to be fruitful to attempt to recognise digits from the activities of the
hidden units – the HM is apparently capable of extracting the ‘wrong’ sort of structure. We
are presently investigating why.

Wehave used twomain rules for synaptic plasticity – the delta rule (Konorski, 1948;Widrow
&Stearns, 1985; Rescorla&Wagner, 1972) in thewake-sleep algorithm and a correlational or
Hebbian rule (Hebb, 1949) for the Boltzmannmachine learning in the lateral HM.However,
our main goal in designing learning rules was to make all the information required for
learning be local, a minimal requirement for biological plausibility. Although most of the
evidence on neural plasticity points to the implementation of Hebb rules, it is well known
that delta-like rules can be implemented by Hebb-like mechanisms (Artola, Bröcher &
Singer, 1990; Hancock, Smith and Phillips, 1991; Montague et al, 1994).

Unsupervised learning of representations is only part of the overall computational economy
of the brain – reinforcement and associative learning based on these representations must
also play major roles. The HM offers an hypothesis for how density estimation in complex
hierarchical models can be implemented and suggests a role for puzzling anatomical motifs
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such as reciprocal connectivity. How closely the HMmaps onto the microcircuitry of cortex
is under investigation.
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Figure 1:
A three-layer Helmholtz machine. Weights � define a top-down generative model in layersZ ,Y andD of stochastic binary units. D are the observables, and the task for � ismaximising
the probability p(dj�). Weights � define a bottom-up recognition model that attempts to
invert the generative model.

Figure 2
Dangling units. (a) The weights an architecture of a generative model that makes it im-
probable that both y1 and y2 come on together, but requires one of them to explain d = 1.
There are no settings of the recognition weights � that permit this. (b) Including a dangling
unit �ymakes recognition possible using the weights shown. In practice, when the dangling
unit learns using generative weights from y1 and y2, it prefers somewhat non-symmetrical
solutions. The arrows without a starting unit are biases. The weights are learned, and are
not quite at their final values.

Figure 3
The Lateral HM. � is a standard generative model; � an altered recognition model; and !
are recurrent weights within layer Y . Only some of the recurrent weights are shown.
Figure 4
A joint density HM. Solid lines are recognition weights, dotted lines are generative weights,
the boxes are layers of units, y and z are hidden units, e (black box) is the input, d (grey
box) the output. This machine would not work well.

Figure 5
Supervised Helmholtz machines. a) The side-information HM explicitly builds a condi-
tional probability density function using the known e like side information in coding. b)
The clipped HM builds a density model of the known e and uses its hidden states to build
a generative model of the unknown d. c) The inverse HM builds generative models of the
unknown d and a conditional model of the knowns e given the unknown and uses the
sleep phase to learn to invert this model.
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Figure 6
The Helmholtz machine Through Time. This shows the first two timesteps for a three-layer
HMTT. Only one unit per layer is shown for convenience. Note that recognition (solid)
and generative (dotted) connections both point in the direction of increasing time. More
complicated architectures are also possible with direct connections from the input units at
one time to the inputs at the next, or links that cross layers over time. The recognition and
generative biases for the first timestep can be different from those for subsequent timesteps.
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